6-2 Differences of Two Squares

What is a perfect Square?

- A number with & two factors of the same #.

The first 15 perfect squares are:

1 4 9	121 144 169	Variables can be perfect squares too!
16 25 36 49 64 81 100	196 225	If a variable has an even power (exponent), it is a perfect square. $ \chi^2 \chi^6 \chi^{19} \chi^8 \chi^{12} \chi^{16} $

The difference of two squares is just that...

Two perfect squares and a subtraction sign.

Key Questions:

(negative)

(Minus)

Is the polynomial the difference of two squares?

$$u^{2} - v^{2} \qquad \forall e \leq 1$$

$$x^{2} - y^{3} \qquad \forall e \leq 1$$

$$x^{2} + y^{2} \qquad \forall e \leq 1$$

$$x^{2} + y^{2} \qquad \forall e \leq 1$$

$$x^{2} + y^{2} \qquad \forall e \leq 1$$

The difference of two squares can be factored.

The factors will be in two sets of parentheses - a binomial in each.

₩When factoring, factor out a GCF (if possible) first! ★

Factor:
$$\chi_{x}^{2} + 4.4$$
 $\chi_{x}^{2} - 16$ $(\chi + 4)(\chi - 4)$ HELLO OF $(\chi - 4)(\chi + 4)$ $-64y^{2} + 25x^{2}$ $8\chi - 8\gamma$ $(5\chi + 8\gamma)(5\chi - 8\gamma)$

$$\frac{5x \cdot 5x}{25x^{2} - 4}$$

$$\frac{5x + 2}{5x - 2}$$

$$\frac{5x + 2}{5x - 2}$$

$$\frac{5x - 2}{5x - 2}$$

$$\frac{32x^{2} - 50y^{2}}{2} = GCF : 2$$

$$\frac{2(16x^{2} - 25y^{2})}{2}$$

$$\frac{2(4x + 5y)(4x - 5y)}{2}$$